mumax3
GPU-accelerated micromagnetism

Home Download Examples API


mumax 3.9c API

This is a complete overview of all available functions for writing an input script.

Syntax

The mumax3 input syntax is a subset of Go's syntax, somewhat similar to C. It is case-independent however, so msat is the same as Msat or MSAT.

Defining variables

New variables are declared using :=. Variables have a fixed type, inferred from the declaration's right-hand-side. Assigning to existing variables is done using =. E.g.:
i := 7         // defines a new variable i, type automatically detected to be int
print(i)       // now we can use i
i = 5          // assign new value, don't use ':=' (attempt to re-declare)

str := "hello" // defines str, type automatically is string
//str = 1      // would fail, cannot assign int to string

Arithmetic

Most common arithmetic operations are possible. Also Go's math library and some common constants are available. For raise-to-the-power, pow(x,y) should be used.
x := pi*(3+4)/5
x = pow(x, 3)
x++
y := abs(cbrt(cosh(erf(erfc(gamma(J0(Y0(2))))))))

Control structures

Loops are possible as well:
for i:=0; i<10; i++{
	print(i)
}

Implicit functions

Some of the API features accept a function as argument (e.g.: RunWhile(func()bool), or all input parameters). In that case, and only in this case, the argument is implicitly converted to a function, which is re-evaluated each time it's needed. E.g.:
value := sin(pi*t)  // value is a float64, RHS evaluated only once
Msat = value        // time-independent Msat
versus:
Msat = sin(pi*t)    // RHS converted to function, re-evaluted every time

Setting the mesh size

The simulation mesh defines the size of the box around your magnet. It should be set at the beginning of the script. The number of cells should preferably be powers of two, or at least have small prime factors (2,3,5,7). E.g.:
Nx := 128
Ny := 64
Nz := 2
sizeX := 500e-9
sizeY := 250e-9
sizeZ := 10e-9
SetGridSize(Nx, Ny, Nz)
SetCellSize(sizeX/Nx, sizeY/Ny, sizeZ/Nz)

Periodic boundary conditions

Optionally, periodic boundary conditions can be enabled:
SetPBC(5, 0, 0)        // 5 extra images on left and right sides.
SetGridSize(128, 64, 1)
SetCellSize(5e-9, 5e-9, 5e-9)
Setting a nonzero PBC value in a direction enables wrap-around in that direction. The precise value passed determines how many repetitions are seen by the demag field. E.g., in the above example the demag field behaves as if 5 repetitions are present to the left and to the right side. Choosing a large number may cause long initialization time.

Resizing the mesh

The mesh can be changed at any later time in the simulation. This will cause the magnetization to be stretched onto the new mesh if needed, and the geometry and regions to be re-calculated. After resize some cells which had zero magnetization may now fall inside the magnet geometry, they will be initialized to random magnetization.

SetCellSize(float64, float64, float64)

Sets the X,Y,Z cell size in meters

examples: [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

SetGridSize(int, int, int)

Sets the number of cells for X,Y,Z

examples: [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

SetMesh(int, int, int, float64, float64, float64, int, int, int)

Sets GridSize, CellSize and PBC in once

SetPBC(int, int, int)

Sets number of repetitions in X,Y,Z


Setting a geometry

Optionally a magnet Shape other than the full simulation box can be specified. One can specify primitive shapes, constructed at the origin (box center), and translate/rotate them if needed. All positions are specified in meters and the origin lies in the center of the simulation box. E.g.:
 SetGeom(cylinder(400e-9, 20e-9).RotX(45*pi/180).Transl(1e-6,0,0))

SetGeom(Shape)

Sets the geometry to a given shape

examples: [4] [6] [7] [8] [9] [11] [12] [14]

EdgeSmooth

Geometry edge smoothing with edgeSmooth^3 samples per cell, 0=staircase, ~8=very smooth

examples: [4]

Cell(int, int, int) Shape

Single cell with given integer index (i, j, k)

methods: Add( Shape )   Intersect( Shape )   Inverse( )   Repeat( float64 float64 float64 )   RotX( float64 )   RotY( float64 )   RotZ( float64 )   Scale( float64 float64 float64 )   Sub( Shape )   Transl( float64 float64 float64 )   Xor( Shape )  

examples: [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

Circle(float64) Shape

2D Circle with diameter in meter

methods: Add( Shape )   Intersect( Shape )   Inverse( )   Repeat( float64 float64 float64 )   RotX( float64 )   RotY( float64 )   RotZ( float64 )   Scale( float64 float64 float64 )   Sub( Shape )   Transl( float64 float64 float64 )   Xor( Shape )  

examples: [4] [6] [7] [8] [12]

Cuboid(float64, float64, float64) Shape

Cuboid with sides in meter

methods: Add( Shape )   Intersect( Shape )   Inverse( )   Repeat( float64 float64 float64 )   RotX( float64 )   RotY( float64 )   RotZ( float64 )   Scale( float64 float64 float64 )   Sub( Shape )   Transl( float64 float64 float64 )   Xor( Shape )  

examples: [4]

Cylinder(float64, float64) Shape

3D Cylinder with diameter and height in meter

methods: Add( Shape )   Intersect( Shape )   Inverse( )   Repeat( float64 float64 float64 )   RotX( float64 )   RotY( float64 )   RotZ( float64 )   Scale( float64 float64 float64 )   Sub( Shape )   Transl( float64 float64 float64 )   Xor( Shape )  

examples: [4] [5] [6]

Ellipse(float64, float64) Shape

2D Ellipse with axes in meter

methods: Add( Shape )   Intersect( Shape )   Inverse( )   Repeat( float64 float64 float64 )   RotX( float64 )   RotY( float64 )   RotZ( float64 )   Scale( float64 float64 float64 )   Sub( Shape )   Transl( float64 float64 float64 )   Xor( Shape )  

examples: [14]

Ellipsoid(float64, float64, float64) Shape

3D Ellipsoid with axes in meter

methods: Add( Shape )   Intersect( Shape )   Inverse( )   Repeat( float64 float64 float64 )   RotX( float64 )   RotY( float64 )   RotZ( float64 )   Scale( float64 float64 float64 )   Sub( Shape )   Transl( float64 float64 float64 )   Xor( Shape )  

examples: [4]

GrainRoughness(float64, float64, float64, int) Shape

Grainy surface with different heights per grain

methods: Add( Shape )   Intersect( Shape )   Inverse( )   Repeat( float64 float64 float64 )   RotX( float64 )   RotY( float64 )   RotZ( float64 )   Scale( float64 float64 float64 )   Sub( Shape )   Transl( float64 float64 float64 )   Xor( Shape )  

ImageShape(string) Shape

Use black/white image as shape

methods: Add( Shape )   Intersect( Shape )   Inverse( )   Repeat( float64 float64 float64 )   RotX( float64 )   RotY( float64 )   RotZ( float64 )   Scale( float64 float64 float64 )   Sub( Shape )   Transl( float64 float64 float64 )   Xor( Shape )  

examples: [4]

Layer(int) Shape

Single layer (along z), by integer index starting from 0

methods: Add( Shape )   Intersect( Shape )   Inverse( )   Repeat( float64 float64 float64 )   RotX( float64 )   RotY( float64 )   RotZ( float64 )   Scale( float64 float64 float64 )   Sub( Shape )   Transl( float64 float64 float64 )   Xor( Shape )  

examples: [4] [13] [14]

Layers(int, int) Shape

Part of space between cell layer1 (inclusive) and layer2 (exclusive), in integer indices

methods: Add( Shape )   Intersect( Shape )   Inverse( )   Repeat( float64 float64 float64 )   RotX( float64 )   RotY( float64 )   RotZ( float64 )   Scale( float64 float64 float64 )   Sub( Shape )   Transl( float64 float64 float64 )   Xor( Shape )  

examples: [4]

Rect(float64, float64) Shape

2D rectangle with size in meter

methods: Add( Shape )   Intersect( Shape )   Inverse( )   Repeat( float64 float64 float64 )   RotX( float64 )   RotY( float64 )   RotZ( float64 )   Scale( float64 float64 float64 )   Sub( Shape )   Transl( float64 float64 float64 )   Xor( Shape )  

examples: [4] [6] [9] [11] [12] [15]

Square(float64) Shape

2D square with size in meter

methods: Add( Shape )   Intersect( Shape )   Inverse( )   Repeat( float64 float64 float64 )   RotX( float64 )   RotY( float64 )   RotZ( float64 )   Scale( float64 float64 float64 )   Sub( Shape )   Transl( float64 float64 float64 )   Xor( Shape )  

examples: [6]

Universe() Shape

Entire space

methods: Add( Shape )   Intersect( Shape )   Inverse( )   Repeat( float64 float64 float64 )   RotX( float64 )   RotY( float64 )   RotZ( float64 )   Scale( float64 float64 float64 )   Sub( Shape )   Transl( float64 float64 float64 )   Xor( Shape )  

XRange(float64, float64) Shape

Part of space between x1 and x2, in meter

methods: Add( Shape )   Intersect( Shape )   Inverse( )   Repeat( float64 float64 float64 )   RotX( float64 )   RotY( float64 )   RotZ( float64 )   Scale( float64 float64 float64 )   Sub( Shape )   Transl( float64 float64 float64 )   Xor( Shape )  

examples: [4] [7]

YRange(float64, float64) Shape

Part of space between y1 and y2, in meter

methods: Add( Shape )   Intersect( Shape )   Inverse( )   Repeat( float64 float64 float64 )   RotX( float64 )   RotY( float64 )   RotZ( float64 )   Scale( float64 float64 float64 )   Sub( Shape )   Transl( float64 float64 float64 )   Xor( Shape )  

ZRange(float64, float64) Shape

Part of space between z1 and z2, in meter

methods: Add( Shape )   Intersect( Shape )   Inverse( )   Repeat( float64 float64 float64 )   RotX( float64 )   RotY( float64 )   RotZ( float64 )   Scale( float64 float64 float64 )   Sub( Shape )   Transl( float64 float64 float64 )   Xor( Shape )  


Defining material regions

Optionally, up to 256 material regions can be defined. Since each cell is made from one material, it is associated with exactly one region. So regions can not overlap. Each cell is assigned material region 0 by default. It's a good idea to output regions to verify whether each cell is assigned to the intended region. Each region can have its own material parameters, and we can output averages over each region. E.g.:
DefRegion(1, circle(1e-6))
DefRegion(0, circle(1e-6).Inverse()) // redundant
save(regions)
Msat.SetRegion(1, 800e6)
tableAdd(m.Region(1))    // add average m over region 1 to table

DefRegion(int, Shape)

Define a material region with given index (0-255) and shape

examples: [7] [12] [13]

DefRegionCell(int, int, int, int)

Set a material region in one cell by index

regions

Outputs the region index for each cell

methods: Average( )   GetCell( int int int )   Gpu( )   HostArray( )   HostList( )   LoadFile( string )   SetCell( int int int int )  

examples: [7] [12]


Initial magnetization

The initial magnetization is set by assigning a Config to m, setting it in separate regions, or by loading a file directly.
m = uniform(1, 0, 0)
m.SetRegion(1, vortex(1, 1))
m.LoadFile("config.ovf")

m

Reduced magnetization (unit length)

methods: Average( )   Buffer( )   Comp( int )   GetCell( int int int )   LoadFile( string )   Region( int )   Set( Config )   SetArray( Slice )   SetCell( int int int data.Vector )   SetInShape( Shape Config )   SetRegion( int Config )   TableData( )  

examples: [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

Antivortex(int, int) Config

Antivortex magnetization with given circulation and core polarization

methods: Add( float64 Config )   RotZ( float64 )   Scale( float64 float64 float64 )   Transl( float64 float64 float64 )  

BlochSkyrmion(int, int) Config

Bloch skyrmion magnetization with given chirality and core polarization

methods: Add( float64 Config )   RotZ( float64 )   Scale( float64 float64 float64 )   Transl( float64 float64 float64 )  

examples: [5]

NeelSkyrmion(int, int) Config

Néél skyrmion magnetization with given charge and core polarization

methods: Add( float64 Config )   RotZ( float64 )   Scale( float64 float64 float64 )   Transl( float64 float64 float64 )  

examples: [5]

RandomMag() Config

Random magnetization

methods: Add( float64 Config )   RotZ( float64 )   Scale( float64 float64 float64 )   Transl( float64 float64 float64 )  

examples: [3] [5]

RandomMagSeed(int) Config

Random magnetization with given seed

methods: Add( float64 Config )   RotZ( float64 )   Scale( float64 float64 float64 )   Transl( float64 float64 float64 )  

TwoDomain(float64, float64, float64, float64, float64, float64, float64, float64, float64) Config

Twodomain magnetization with with given magnetization in left domain, wall, and right domain

methods: Add( float64 Config )   RotZ( float64 )   Scale( float64 float64 float64 )   Transl( float64 float64 float64 )  

examples: [5] [10] [11]

Uniform(float64, float64, float64) Config

Uniform magnetization in given direction

methods: Add( float64 Config )   RotZ( float64 )   Scale( float64 float64 float64 )   Transl( float64 float64 float64 )  

examples: [1] [2] [5] [6] [7] [13] [14] [15]

Vortex(int, int) Config

Vortex magnetization with given circulation and core polarization

methods: Add( float64 Config )   RotZ( float64 )   Scale( float64 float64 float64 )   Transl( float64 float64 float64 )  

examples: [5] [8] [9] [12]

VortexWall(float64, float64, int, int) Config

Vortex wall magnetization with given mx in left and right domain and core circulation and polarization

methods: Add( float64 Config )   RotZ( float64 )   Scale( float64 float64 float64 )   Transl( float64 float64 float64 )  

examples: [5]


Material parameters

Assigning to a material parameter sets a value in all regions. E.g.:
Msat  = 800e3
AnisU = vector(1, 0, 0)
When regions are defined, they can also be set region-wise:
Msat.SetRegion(0, 800e3)
Msat.SetRegion(1, 540e3)
Material parameters can be functions of time as well. E.g.:
f := 500e6
Ku1 = 500 * sin(2*pi*f*t)

Aex

Exchange stiffness (J/m)

methods: Average( )   GetRegion( int )   IsUniform( )   Region( int )   Set( float64 )   SetRegion( int ScalarFunction )   SetRegionFuncGo( int func() float64 )   SetRegionValueGo( int float64 )  

examples: [1] [2] [3] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

alpha

Landau-Lifshitz damping constant

methods: Average( )   GetRegion( int )   IsUniform( )   Region( int )   Set( float64 )   SetRegion( int ScalarFunction )   SetRegionFuncGo( int func() float64 )   SetRegionValueGo( int float64 )  

examples: [1] [6] [7] [8] [10] [11] [12] [14] [15]

anisC1

Cubic anisotropy direction #1

methods: Average( )   Comp( int )   GetRegion( int )   IsUniform( )   Region( int )   SetRegion( int VectorFunction )   SetRegionFn( int func() [3]float64 )  

examples: [12]

anisC2

Cubic anisotorpy directon #2

methods: Average( )   Comp( int )   GetRegion( int )   IsUniform( )   Region( int )   SetRegion( int VectorFunction )   SetRegionFn( int func() [3]float64 )  

examples: [12]

anisU

Uniaxial anisotropy direction

methods: Average( )   Comp( int )   GetRegion( int )   IsUniform( )   Region( int )   SetRegion( int VectorFunction )   SetRegionFn( int func() [3]float64 )  

examples: [7] [10] [15]

Dbulk

Bulk Dzyaloshinskii-Moriya strength (J/m2)

methods: Average( )   GetRegion( int )   IsUniform( )   Region( int )   Set( float64 )   SetRegion( int ScalarFunction )   SetRegionFuncGo( int func() float64 )   SetRegionValueGo( int float64 )  

Dind

Interfacial Dzyaloshinskii-Moriya strength (J/m2)

methods: Average( )   GetRegion( int )   IsUniform( )   Region( int )   Set( float64 )   SetRegion( int ScalarFunction )   SetRegionFuncGo( int func() float64 )   SetRegionValueGo( int float64 )  

EpsilonPrime

Slonczewski secondairy STT term ε'

methods: Average( )   GetRegion( int )   IsUniform( )   Region( int )   Set( float64 )   SetRegion( int ScalarFunction )   SetRegionFuncGo( int func() float64 )   SetRegionValueGo( int float64 )  

examples: [14]

FixedLayer

Slonczewski fixed layer polarization

methods: Average( )   Comp( int )   GetRegion( int )   IsUniform( )   Region( int )   SetRegion( int VectorFunction )   SetRegionFn( int func() [3]float64 )  

examples: [14]

frozenspins

Defines spins that should be fixed

methods: Average( )   GetRegion( int )   IsUniform( )   Region( int )   Set( float64 )   SetRegion( int ScalarFunction )   SetRegionFuncGo( int func() float64 )   SetRegionValueGo( int float64 )  

Kc1

1st order cubic anisotropy constant (J/m3)

methods: Average( )   GetRegion( int )   IsUniform( )   Region( int )   Set( float64 )   SetRegion( int ScalarFunction )   SetRegionFuncGo( int func() float64 )   SetRegionValueGo( int float64 )  

examples: [12]

Kc2

2nd order cubic anisotropy constant (J/m3)

methods: Average( )   GetRegion( int )   IsUniform( )   Region( int )   Set( float64 )   SetRegion( int ScalarFunction )   SetRegionFuncGo( int func() float64 )   SetRegionValueGo( int float64 )  

Kc3

3rd order cubic anisotropy constant (J/m3)

methods: Average( )   GetRegion( int )   IsUniform( )   Region( int )   Set( float64 )   SetRegion( int ScalarFunction )   SetRegionFuncGo( int func() float64 )   SetRegionValueGo( int float64 )  

Ku1

1st order uniaxial anisotropy constant (J/m3)

methods: Average( )   GetRegion( int )   IsUniform( )   Region( int )   Set( float64 )   SetRegion( int ScalarFunction )   SetRegionFuncGo( int func() float64 )   SetRegionValueGo( int float64 )  

examples: [7] [10] [15]

Ku2

2nd order uniaxial anisotropy constant (J/m3)

methods: Average( )   GetRegion( int )   IsUniform( )   Region( int )   Set( float64 )   SetRegion( int ScalarFunction )   SetRegionFuncGo( int func() float64 )   SetRegionValueGo( int float64 )  

Lambda

Slonczewski Λ parameter

methods: Average( )   GetRegion( int )   IsUniform( )   Region( int )   Set( float64 )   SetRegion( int ScalarFunction )   SetRegionFuncGo( int func() float64 )   SetRegionValueGo( int float64 )  

examples: [14]

Msat

Saturation magnetization (A/m)

methods: Average( )   GetRegion( int )   IsUniform( )   Region( int )   Set( float64 )   SetRegion( int ScalarFunction )   SetRegionFuncGo( int func() float64 )   SetRegionValueGo( int float64 )  

examples: [1] [2] [3] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

NoDemagSpins

Disable magnetostatic interaction per-spin (set to 1 to disable)

methods: Average( )   GetRegion( int )   IsUniform( )   Region( int )   Set( float64 )   SetRegion( int ScalarFunction )   SetRegionFuncGo( int func() float64 )   SetRegionValueGo( int float64 )  

Pol

Electrical current polarization

methods: Average( )   GetRegion( int )   IsUniform( )   Region( int )   Set( float64 )   SetRegion( int ScalarFunction )   SetRegionFuncGo( int func() float64 )   SetRegionValueGo( int float64 )  

examples: [5] [10] [11] [14]

Temp

Temperature (K)

methods: Average( )   GetRegion( int )   IsUniform( )   Region( int )   Set( float64 )   SetRegion( int ScalarFunction )   SetRegionFuncGo( int func() float64 )   SetRegionValueGo( int float64 )  

xi

Non-adiabaticity of spin-transfer-torque

methods: Average( )   GetRegion( int )   IsUniform( )   Region( int )   Set( float64 )   SetRegion( int ScalarFunction )   SetRegionFuncGo( int func() float64 )   SetRegionValueGo( int float64 )  

examples: [10] [11] [12]


Excitation

Field or current excitations can be set in the same way as material parameters:
B_ext = vector(0.01, 1e-6*sin(2*pi*f*t), 0)
B_ext.SetRegion(1, vector(0, 0, 0.1))
Additionally, an arbitrary number of time- and space-dependent vector fields of the form g(x,y,z) * f(t) may be added. (E.g., to simulate the field of an antenna or an arbitrary current running through the magnet)
B_ext.Add(LoadFile("antenna.ovf"), sin(2*pi*f*t))
JPol.Add(LoadFile("current.ovf"), 1)

B_ext

Externally applied field (T)

methods: Add( Slice ScalarFunction )   AddGo( Slice func() float64 )   AddTo( Slice )   Average( )   Comp( int )   IsUniform( )   Region( int )   RemoveExtraTerms( )   Set( data.Vector )   SetRegion( int VectorFunction )   SetRegionFn( int func() [3]float64 )  

examples: [1] [3] [15]

J

Electrical current density (A/m2)

methods: Add( Slice ScalarFunction )   AddGo( Slice func() float64 )   AddTo( Slice )   Average( )   Comp( int )   IsUniform( )   Region( int )   RemoveExtraTerms( )   Set( data.Vector )   SetRegion( int VectorFunction )   SetRegionFn( int func() [3]float64 )  

examples: [10] [11] [12] [13] [14] [15]

Index2Coord(int, int, int) data.Vector

Convert cell index to x,y,z coordinate in meter

methods: Add( data.Vector )   Cross( data.Vector )   Div( float64 )   Dot( data.Vector )   Len( )   MAdd( float64 data.Vector )   Mul( float64 )   Sub( data.Vector )   X( )   Y( )   Z( )  

examples: [15]

LoadFile(string) Slice

Load a data file (ovf or dump)

methods: CPUAccess( )   Comp( int )   DevPtr( int )   Disable( )   Free( )   GPUAccess( )   Get( int int int int )   Host( )   HostCopy( )   Index( int int int )   IsNil( )   Len( )   MemType( )   Scalars( )   Set( int int int int float64 )   SetScalar( int int int float64 )   SetVector( int int int data.Vector )   Size( )   Tensors( )   Vectors( )  

examples: [5]

NewSlice(int, int, int, int) Slice

Makes a 4D array of scalars with given ncomp,x,y,z size

methods: CPUAccess( )   Comp( int )   DevPtr( int )   Disable( )   Free( )   GPUAccess( )   Get( int int int int )   Host( )   HostCopy( )   Index( int int int )   IsNil( )   Len( )   MemType( )   Scalars( )   Set( int int int int float64 )   SetScalar( int int int float64 )   SetVector( int int int data.Vector )   Size( )   Tensors( )   Vectors( )  


Magnetic Force Microscopy

Mumax3 has built-in generation of MFM images from a 2D magnetization. The MFM tip lift can be freely chosen. By default the tip magnetization is modeled as a point monopole at the apex. This is sufficient for most situations. Nevertheless, it is also possible to model partially magnetized tips by setting MFMDipole to the magnetized portion of the tip, in meters. E.g., if only the first 20nm of the tip is (vertically) magnetized, set MFMDipole=20e-9.

MFM

MFM image

methods: Average( )   Region( int )   Set( Slice )  

examples: [9]

MFMDipole

Height of vertically magnetized part of MFM tip

MFMLift

MFM lift height

examples: [9]


Output quantities

The quantities listed below can be output. Also, derived quantities can be produced: the quantity restricted to a certain region or a single component. E.g.:
m           // magnetization quantity
m.Comp(0)   // x-component
m.Region(1) // magnetization in region 1 (0 elsewhere)

B_anis

Anisotropy field (T)

methods: AddTo( Slice )   Average( )   Comp( int )   Region( int )   Set( Slice )  

B_demag

Magnetostatic field (T)

methods: Average( )   Comp( int )   Region( int )   Set( Slice )  

B_eff

Effective field (T)

methods: Average( )   Comp( int )   Region( int )   Set( Slice )  

B_exch

Exchange field (T)

methods: AddTo( Slice )   Average( )   Comp( int )   Region( int )   Set( Slice )  

B_therm

Thermal field (T)

methods: AddTo( Slice )  

dt

Time Step (s)

methods: Average( )   Get( )  

E_anis

Anisotropy energy (uni+cubic) (J)

methods: Average( )   Get( )  

E_demag

Magnetostatic energy (J)

methods: Average( )   Get( )  

E_exch

Exchange energy (normal+DM) (J)

methods: Average( )   Get( )  

E_therm

Thermal energy (J)

methods: Average( )   Get( )  

E_total

Total energy (J)

methods: Average( )   Get( )  

examples: [13]

E_Zeeman

Zeeman energy (J)

methods: Average( )   Get( )  

Edens_anis

Anisotropy energy density (uni+cubic) (J/m3)

methods: AddTo( Slice )   Average( )   Region( int )   Set( Slice )  

Edens_demag

Magnetostatic energy density (J/m3)

methods: AddTo( Slice )   Average( )   Region( int )   Set( Slice )  

Edens_exch

Exchange energy density (normal+DM) (J/m3)

methods: AddTo( Slice )   Average( )   Region( int )   Set( Slice )  

Edens_therm

Thermal energy density (J/m3)

methods: AddTo( Slice )   Average( )   Region( int )   Set( Slice )  

Edens_total

Total energy density (J/m3)

methods: Average( )   Region( int )   Set( Slice )  

Edens_Zeeman

Zeeman energy density (J/m3)

methods: AddTo( Slice )   Average( )   Region( int )   Set( Slice )  

ExchCoupling

Average exchange coupling with neighbors (arb.)

methods: Average( )   Region( int )   Set( Slice )  

examples: [12]

geom

Cell fill fraction (0..1)

methods: Average( )   Gpu( )  

examples: [4] [6] [7] [8] [9] [11] [12] [14]

LastErr

Error of last step

methods: Average( )   Get( )  

LLtorque

Landau-Lifshitz torque/γ0 (T)

methods: Average( )   Comp( int )   Region( int )   Set( Slice )  

m_full

Unnormalized magnetization (A/m)

methods: Average( )   Comp( int )   Region( int )   Set( Slice )  

MaxAngle

Maximum angle between neighboring spins (rad)

methods: Average( )   Get( )  

maxTorque

Maximum torque/γ0, over all cells (T)

methods: Average( )   Get( )  

NEval

Total number of torque evaluations

methods: Average( )   Get( )  

PeakErr

Overall maxium error per step

methods: Average( )   Get( )  

spinAngle

Angle between neighboring spins (rad)

methods: Average( )   Region( int )   Set( Slice )  

STtorque

Spin-transfer torque/γ0 (T)

methods: AddTo( Slice )   Average( )   Comp( int )   Region( int )   Set( Slice )  

torque

Total torque/γ0 (T)

methods: Average( )   Comp( int )   Region( int )   Set( Slice )  


Slicing and dicing output

To save storage space, it's possible to save only the part of the output we're interested in. This works on all output quantities (not only m)
save(m)                         // save full magnetization
save(m.Comp(0))                 // save only x-component
save(CropLayer(m, 13))          // save only layer 13
save(CropLayer(m.Comp(0), 13))  // save only x-component of layer 13
Or even:
mx   := m.Comp(0)
mx13 := CropLayer(mx, 13) 
save(mx13)
tableAdd(mx13)

Crop(Quantity, int, int, int, int, int, int) *cropped

Crops a quantity to cell ranges [x1,x2[, [y1,y2[, [z1,z2[

methods: Average( )  

examples: [8]

CropLayer(Quantity, int) *cropped

Crops a quantity to a single layer

methods: Average( )  

CropX(Quantity, int, int) *cropped

Crops a quantity to cell ranges [x1,x2[

methods: Average( )  

CropY(Quantity, int, int) *cropped

Crops a quantity to cell ranges [y1,y2[

methods: Average( )  

examples: [8]

CropZ(Quantity, int, int) *cropped

Crops a quantity to cell ranges [z1,z2[

methods: Average( )  


Scheduling output

All input and output quantities (as described above) can be saved in a space-dependent way (".ovf" file), or as spatial averages (table output). The data table ("table.txt") contains by default the time and average magnetization. More columns can be added with TableAdd().
save(B_ext)

tableadd(B_ext)
tablesave()
Optionally, the output/averaging can be done over a single region:
save(m.Region(1))
TableAdd(m.Region(1)) 
User-defined variables can be added to the table with TableAddVar().
myField := 0.42
TableAddVar(myField, "B_extra", "T")
myField = ...

AutoSave(Quantity, float64)

Auto save space-dependent quantity every period (s).

examples: [1] [10] [11] [14] [15]

AutoSnapshot(Quantity, float64)

Auto save image of quantity every period (s).

FilenameFormat

printf formatting string for output filenames.

Fprintln(string, ...interface {})

Print to file

OutputFormat

Format for data files: OVF1_TEXT, OVF1_BINARY, OVF2_TEXT or OVF2_BINARY

OVF1_BINARY

OutputFormat = OVF1_BINARY sets binary OVF1 output

OVF1_TEXT

OutputFormat = OVF1_TEXT sets text OVF1 output

OVF2_BINARY

OutputFormat = OVF2_BINARY sets binary OVF2 output

OVF2_TEXT

OutputFormat = OVF2_TEXT sets text OVF2 output

Print(...interface {})

Print to standard output

examples: [2]

Save(Quantity)

Save space-dependent quantity once, with auto filename

examples: [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

SaveAs(Quantity, string)

Save space-dependent with custom filename

examples: [4] [5] [7] [9]

Snapshot(Quantity)

Save image of quantity

SnapshotFormat

Image format for snapshots: jpg, png or gif.

sprint(...interface {}) string

Print all arguments to string with automatic formatting

sprintf(string, ...interface {}) string

Print to string with C-style formatting.

TableAdd(TableData)

Add quantity as a column to the data table.

examples: [3] [11] [13]

TableAddVar(ScalarFunction, string, string)

Add user-defined variable + name + unit to data table.

TableAutoSave(float64)

Auto-save the data table every period (s). Zero disables save.

examples: [1] [11] [14]

TablePrint(...interface {})

Print anyting in the data table

TableSave()

Save the data table right now (appends one line).

examples: [3] [13]


Running

Run(time) runs the simulation for a given time in seconds, using sensible error settings.
Run(1e-9)
More fine-grained control is provided by RunWhile(condition), which runs as long as an arbitrary condition is met. E.g.:
mx := m.comp(0)
RunWhile(mx.average() < 0)   // search for switching field during reversal
Optionally, the solver accuracy may be fine-tuned. E.g.:
MaxDt = 1e-12
MinDt = 1e-15
MaxErr = 1e-6
Optionally, a different solver may be chosen (at any point) with SetSolver(int). Currently available solver types: E.g.:
SetSolver(2) // Heun
FixDt = 1e-15

Relax

Relax() tries to evolve the magnetization as closely as possible to the minimum energy state. This function assumes all excitations have been turned off (temperature, electrical current, time-dependent magnetic fields). During relax precession is disabled and the time t does not increase. There is no need to set high damping.

In general it is difficult to be sure the minimum energy state has been truly reached. Hence, relax may occasionally return after the energy has reached a local minimum, a saddle point, or a rather flat valley in the energy landscape.

Minimize

Minimize() is like Relax, but uses the conjugate gradient method to find the energy minimum. It is usually much faster than Relax, but is a bit less robust against divergence. E.g., a random starting configuration can be Relaxed, but may fail with Minimize. Minimize is very well suited for hysteresis calculations, where we are never far away from the ground state.

Minimize()

Use steepest conjugate gradient method to minimize the total energy

examples: [3] [6]

Relax()

Try to minimize the total energy

examples: [1] [2] [3] [9] [10] [11]

Run(float64)

Run the simulation for a time in seconds

examples: [1] [7] [10] [11] [12] [14] [15]

RunWhile(func() bool)

Run while condition function is true

Steps(int)

Run the simulation for a number of time steps

FixDt

Set a fixed time step, 0 disables fixed step

Headroom

Solver headroom

MaxDt

Maximum time step the solver can take (s)

MaxErr

Maximum error per step the solver can tolerate

MinDt

Minimum time step the solver can take (s)

MinimizerSamples

Number of max dM to collect for Minimize convergence check.

MinimizerStop

Stopping max dM for Minimize

examples: [3]

step

Total number of time steps taken

examples: [3] [10]

t

Total simulated time (s)

examples: [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

SetSolver(int)

Set solver type. 1:Euler, 2:Heun


Moving simulation window

Mumax3 can automatically shift the magnetization so that the simulation "window" stays centered on a region of interest. Shifting is done to keep a freely chosen magnetization component nearly zero. E.g.
ext_centerwall(0)
ext_rmSurfaceCharge(0, -1, 1)
TableAdd(TotalShift)
will try to keep mx (component 0, counting from 0) close to zero. If desired, one can override which "new" magnetization is inserted from the sides by setting ShiftMagL and ShiftMagR, though the default behaviour is usually OK.

Shift(int)

Shifts the simulation by +1/-1 cells along X

examples: [15]

ShiftGeom

Whether Shift() acts on geometry

ShiftM

Whether Shift() acts on magnetization

examples: [15]

ShiftMagL

Upon shift, insert this magnetization from the left

methods: Add( data.Vector )   Cross( data.Vector )   Div( float64 )   Dot( data.Vector )   Len( )   MAdd( float64 data.Vector )   Mul( float64 )   Sub( data.Vector )   X( )   Y( )   Z( )  

ShiftMagR

Upon shift, insert this magnetization from the right

methods: Add( data.Vector )   Cross( data.Vector )   Div( float64 )   Dot( data.Vector )   Len( )   MAdd( float64 data.Vector )   Mul( float64 )   Sub( data.Vector )   X( )   Y( )   Z( )  

examples: [15]

ShiftRegions

Whether Shift() acts on regions

TotalShift

Amount by which the simulation has been shifted (m).


Extensions

Extensions are extra functionalities that are not officially supported. They are aimed at rather specific problems and may not work as expected for your particular situation. Their API and functionality may change in future releases.

ext_bubbledist

Bubble traveled distance (m)

methods: Average( )   Get( )  

ext_bubblepos

Bubble core position (m)

methods: Average( )   Get( )  

ext_bubblespeed

Bubble velocity (m/s)

methods: Average( )   Get( )  

ext_centerWall(int)

centerWall(c) shifts m after each step to keep m_c close to zero

examples: [10] [11]

ext_corepos

Vortex core position (x,y) + polarization (z) (m)

methods: Average( )   Get( )  

ext_dwpos

Position of the simulation window while following a domain wall (m)

methods: Average( )   Get( )  

examples: [11]

ext_dwspeed

Speed of the simulation window while following a domain wall (m/s)

methods: Average( )   Get( )  

ext_dwtilt

PMA domain wall tilt (rad)

methods: Average( )   Get( )  

ext_EnableUnsafe()

Allow potentially unsafe features, at your own risk.

ext_makegrains(float64, int, int)

Voronoi tesselation (grain size, num regions)

examples: [12] [15]

ext_rmSurfaceCharge(int, float64, float64)

Compensate magnetic charges on the left and right sides of an in-plane magnetized wire. Arguments: region, mx on left and right side, resp.

examples: [11]

ext_ScaleExchange(int, int, float64)

Re-scales exchange coupling between two regions.

examples: [12] [13] [15]

ext_topologicalcharge

2D topological charge

methods: Average( )   Get( )  

ext_topologicalchargedensity

2D topological charge density m·(m/∂x ❌ ∂m/∂y) (1/m2)

methods: Average( )   Region( int )   Set( Slice )  

EnableDemag

Enables/disables demag (default=true)

Expect(string, float64, float64, float64)

Used for automated tests: checks if a value is close enough to the expected value

ExpectV(string, data.Vector, data.Vector, float64)

Used for automated tests: checks if a vector is close enough to the expected value


Misc

Other available functions.

abs(float64) float64

acos(float64) float64

acosh(float64) float64

asin(float64) float64

asinh(float64) float64

atan(float64) float64

atan2(float64, float64) float64

atanh(float64) float64

cbrt(float64) float64

ceil(float64) float64

cos(float64) float64

examples: [6] [13] [14]

cosh(float64) float64

DemagAccuracy

Controls accuracy of demag kernel

DisableSlonczewskiTorque

Disables Slonczewski torque (default=false)

DisableZhangLiTorque

Disables Zhang-Li torque (default=false)

DoPrecess

Enables LL precession (default=true)

DotProduct(Quantity, Quantity) *dotProduct

Dot product of two vector quantities

methods: Average( )  

DUMP

OutputFormat = DUMP sets text DUMP output

erf(float64) float64

erfc(float64) float64

Exit()

Exit from the program

exp(float64) float64

examples: [15]

exp2(float64) float64

expm1(float64) float64

false

floor(float64) float64

Flush()

Flush all pending output to disk.

gamma(float64) float64

GammaLL

Gyromagnetic ratio in rad/Ts

heaviside(float64) float64

hypot(float64, float64) float64

ilogb(float64) int

examples: [2]

inf

examples: [4] [7] [11]

isInf(float64, int) bool

isNaN(float64) bool

j0(float64) float64

j1(float64) float64

jn(int, float64) float64

ldexp(float64, int) float64

log(float64) float64

examples: [2] [4]

log10(float64) float64

log1p(float64) float64

log2(float64) float64

logb(float64) float64

examples: [2]

max(float64, float64) float64

examples: [3] [12]

min(float64, float64) float64

examples: [3] [6]

mod(float64, float64) float64

Mu0

Permittivity of vaccum (Tm/A)

examples: [2]

NewScalarMask(int, int, int) Slice

Makes a 3D array of scalars

methods: CPUAccess( )   Comp( int )   DevPtr( int )   Disable( )   Free( )   GPUAccess( )   Get( int int int int )   Host( )   HostCopy( )   Index( int int int )   IsNil( )   Len( )   MemType( )   Scalars( )   Set( int int int int float64 )   SetScalar( int int int float64 )   SetVector( int int int data.Vector )   Size( )   Tensors( )   Vectors( )  

NewVectorMask(int, int, int) Slice

Makes a 3D array of vectors

methods: CPUAccess( )   Comp( int )   DevPtr( int )   Disable( )   Free( )   GPUAccess( )   Get( int int int int )   Host( )   HostCopy( )   Index( int int int )   IsNil( )   Len( )   MemType( )   Scalars( )   Set( int int int int float64 )   SetScalar( int int int float64 )   SetVector( int int int data.Vector )   Size( )   Tensors( )   Vectors( )  

examples: [15]

norm(float64) float64

Standard normal distribution

examples: [5] [12]

now() time.Time

Returns the current time

methods: Add( time.Duration )   AddDate( int int int )   After( time.Time )   Before( time.Time )   Clock( )   Date( )   Day( )   Equal( time.Time )   Format( string )   GobEncode( )   Hour( )   ISOWeek( )   In( *time.Location )   IsZero( )   Local( )   Location( )   MarshalBinary( )   MarshalJSON( )   MarshalText( )   Minute( )   Month( )   Nanosecond( )   Round( time.Duration )   Second( )   Sub( time.Time )   Truncate( time.Duration )   UTC( )   Unix( )   UnixNano( )   Weekday( )   Year( )   YearDay( )   Zone( )  

pi

examples: [4] [5] [6] [11] [13] [14] [15]

pow(float64, float64) float64

examples: [2] [15]

pow10(int) float64

rand() float64

Random number between 0 and 1

examples: [3] [5] [12] [15]

randExp() float64

Exponentially distributed random number between 0 and +inf, mean=1

randInt(int) int

Random non-negative integer

randNorm() float64

Standard normal random number

examples: [12]

randSeed(int)

Sets the random number seed

remainder(float64, float64) float64

Sign(float64) float64

Signum function

sin(float64) float64

examples: [5] [6] [13] [14] [15]

sinc(float64) float64

since(time.Time) time.Duration

Returns the time elapsed since argument

methods: Hours( )   Minutes( )   Nanoseconds( )   Seconds( )  

sinh(float64) float64

sqrt(float64) float64

examples: [2]

tan(float64) float64

tanh(float64) float64

ThermSeed(int)

Set a random seed for thermal noise

true

trunc(float64) float64

Vector(float64, float64, float64) data.Vector

Constructs a vector with given components

methods: Add( data.Vector )   Cross( data.Vector )   Div( float64 )   Dot( data.Vector )   Len( )   MAdd( float64 data.Vector )   Mul( float64 )   Sub( data.Vector )   X( )   Y( )   Z( )  

examples: [1] [3] [5] [7] [10] [11] [12] [14] [15]

y0(float64) float64

y1(float64) float64

yn(int, float64) float64